Выбор автосцепного оборудования
Страница 2

Статьи » Проект специализированного полувагона » Выбор автосцепного оборудования

В/ - полная ширина захвата при параллельных сцепках;

n – длина консоли от центра шкворня до оси сцепления у рассматриваемого конца вагона;

2l - база вагона;

lT - база тележки;

l - дополнительное поперечное смещение центров зацепления автосцепок;

R – расчетный радиус кривой.

Если автоматическая сцепляемость не обеспечивается, то автосцепки должны быть оборудованы устройством для их принудительного отклонения к центру кривой.

В случае применения специальных конструкций центрирующего устройства автосцепки (например, пружинного) производится проверка возможности сцепления с помощью сцепщика на участке сопряжения прямой и кривой R = 90 м. Критерием выполнения указанного требования является возможность поперечного отклонения головки автосцепки массой Ра (центра зацепления) от усилия Рс сцепщика (250 Н) на величину Х, определяемую по формуле:

Х = [n(2l + n) – lT2]/2R + l - B (3.11)

Обозначения величин в формулах (3.10) и (3.11) одинаковы.

Приведенное выше условие выражается формулой

Рс £ Ра g(Х/lп) (3.12)

где lп - длина маятниковой подвески;

g - ускорение свободного падения.

Ра - масса головки автосцепки;

lп - длина подвески автосцепного устройства.

Для обеспечения прохода вагонов без саморасцепа по сортировочной горке и аппарельному съезду парома требуется выполнить условие:

Dy max £ Dhдоп - Dhн (3.13)

где Dy max – максимальная величина относительного вертикального смещения автосцепок при проходе сцепом вагонов перелома профиля горки или аппарельного съезда;

Dhдоп – допускаемая по условиям сцепления разность уровней автосцепок;

Dhн – допускаемая по ПТЭ начальная разность уровней автосцепок.

Величина Dy max при проходе горки определяется по формуле:

Dy max = A + n (B + C n + D 2l) + n (E + F n + G n2) / 2l (3.14)

где 2l – база вагона, м;

n – длина консоли вагона до оси сцепления, м.

Величина Dy max при проходе аппарельного съезда с длиной моста, большей длины вагона по осям сцепления автосцепок, определяется по формуле:

Dy max = i n – [(1+ n/2l)] i lT / 2 (3.15)

где i – перелом профиля, о/оо. Остальные обозначения такие же, как в формуле (3.10).

В соответствии с «Нормами .» пассажирские и грузовые вагоны могут оборудоваться автосцепками полужесткого типа, ограничивающими относительные вертикальные отклонения автосцепки при проходе горок и паромных переправ в сцепленном состоянии.

Подбор типа поглощающего аппарата для проектируемого вагона производится по минимальной проектной энергоемкости поглощающего аппарата, которая определяется по формуле:

Э = (m v2)/8 (3.16)

где m – номинальная масса вагона брутто (равна сумме значений тары и грузоподъёмности полувагона), т;

v - скорость соударения, принимается равной 3 м/с для 4-х осных вагонов.

Э = [(20,2684 + 76,5316)·9]/8 = 108,9 кДж.

По полученной величине потребной минимальной энергоёмкости выбираем пружинно-фрикционный поглощающий аппарат типа ПФ-4, технические характеристики которого приведены в таблице 3.2.

Таблица 3.2 - Технические характеристики поглощающего аппарата ПГФ-4

Энергоёмкость, кДж

140…170

Сила сопротивления при сжатии, МН

2,0…2,5

Полный ход аппарата, мм

120

Для проектируемого полувагона все детали автосцепного устройства СА-3 и их количество приводятся в таблице 3.3.

Таблица 3.3 – Детали автосцепного устройства СА-3

Наименование

Количество, шт.

Двуплечий рычаг

2

Кронштейн расцепного привода

2

Державка расцепного привода

2

Цепь расцепного привода

2

Ударная розетка вместе с объединенными передними упорными угольниками

2

Маятниковая подвеска

4

Центрирующая балочка

2

Объединенные задние упорные угольники

2

Клин тягового хомута

2

Тяговый хомут

2

Поддерживающая планка

2

Болты для крепления клина тягового хомута

4

Запорная планка

2

Болты для крепления поддерживающей планки

16

Упорная плита

2

Поглощающий аппарат ПГФ-4

2

Автосцепка СА-3 в сборке

2

Страницы: 1 2 3

Выбор конструктивной схемы проектируемого вагона
В данный момент в эксплуатации на сети железных дорог РФ заняты 3 варианта четырёхосных специализированного полувагона с глухим кузовом для перевозки угля и руды моделей 12-1505,12-1592. В качестве вагона-аналога, учитывая указания руководителя курсового проекта, принимается полувагон модели 12-1592 со следующими хара ...

Виды дымомеров и их применение
Дымомер необходим в распоряжении мастерских для предварительной оценки дымности отработавших газов (далее ОГ) без больших затрат времени. Для большинства приборов по измерению дымности ОГ имеются специальные программы по поиску неисправности, включающие постоянные измерения действительных значений дымности ОГ, проводи ...

Время и путь разгона
Необходимо построить графики времени и пути разгона автомобиля от начала движения до максимальной скорости на первом участке перегона (характеристики первого участка перегона - см. таблицу 1.6). Время и путь разгона автомобиля можно определить графоаналитическим способом. С этой целью кривую ускорений разбивают на инт ...